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ABSTRACT 
 
A code called UNÌC is currently under development at Argonne National Laboratory (ANL). The aim of the code is 
to provide a neutronic solver with the same geometrical flexibility of Monte Carlo codes and without the 
approximations (homogenization and energy condensation) associated with the common multi-step approach 
currently used. Moreover, UNÌC will offer the capability of multi-resolution in phase space. At the moment, two 
methodologies are implemented: a second order spherical harmonics (PN) form of the transport equation and the first 
order method of characteristics. To improve overall performance (per-processor and scalability to thousands of 
processors) and reduce memory requirements, we are developing some specialized implementations of key PETSc 
preconditioners and matrix objects. 
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1. INTRODUCTION 
 
Current neutronics analysis requires two or more homogenization and energy group collapsing 
steps. Typically, the first step involves a local calculation to obtain the spectral self-shielding for 
the individual pin. The second step requires an assembly-level calculation to obtain the spectral 
self-shielding for each assembly and to produce homogenized parameters for each unique 
assembly in the reactor. These assembly-level cross sections are then used in a whole-core 
diffusion or transport calculation to obtain the flux solution for a targeted reactor system.  
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One of the major enhancements proposed for neutronics analysis is the elimination of the multi-
step procedure for treating the energy variable. The objective is to exploit advances in both 
numerical and algorithmic efficiency, combined with increasing computing power offered by 
systems with several thousands of processors, in order to solve the neutron transport equation in 
a detailed three-dimensional geometry with thousands of energy groups. Such a deterministic 
approach would directly compete with Monte Carlo methods and should offer the additional 
advantage of a hierarchical treatment of the discretized variables. The ability to obtain the adjoint 
solution for sensitivity calculations is also directly achieved within this framework. This 
approach has been adopted for UNÌC (Ultimate Neutronics Investigation Code) which is under 
development at Argonne National Laboratory. 
 

2. MAIN FEATURES 
 
UNÌC fundamentally has a flexible geometrical option, as in the case of Monte Carlo stochastic-
based codes, by utilizing a general finite element decomposition combined with a large number 
of energy groups (upwards of 10,000). This approach should be able to reduce the spatial 
approximations and eliminate the lattice cross-section generation step thus directly accounting 
for energy and space resonance self-shielding effects. The intent is to enable analysis of 
advanced nuclear reactor designs, including fast reactor systems. 
 
A key feature of UNÌC will be the ability to do multi-resolution. At the moment two methods are 
under development for the code. The first method, PNFE, is based on the even-parity (second-
order) form of the Boltzmann transport equation. The second is a method of characteristics 
(MOC) approach based on the first-order integral transport equation. Both methods share the use 
of unstructured three-dimensional mesh geometry along with a multigroup energy discretization. 
These and other future methods are intended for simultaneous use by space-angle-group coupling 
on the boundaries of a decomposed problem domain.  
 
UNÌC will combine the advantages of various methods such as spherical harmonics, the method 
of characteristics, and/or discrete ordinates. While current reactor analysis tools use a form of the 
integral transport method (collision probability or method of characteristics) to handle the 
assembly and pin heterogeneity in one- or two-dimensions, one can envision a characteristics 
formulation being used locally to handle the pin heterogeneity in 3-dimensions while a spherical 
harmonics formulation is used for the remainder of the domain. 
 
The key is to use flexible coding structures and develop a strategy for coupling the different 
methodologies (characteristics, spherical harmonics, etc.). To this end, we are using the 
variational nodal method developed for fast reactor analysis at Argonne [1]. This method splits 
the problem domain into large spatial “nodes,” or subdomains, and uses spherical harmonic 
interface approximations to couple the nodes. In our recent work, we generalized the spherical 
harmonic interface conditions, thereby allowing different methodologies to be used in each 
subdomain. 
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3. MESH GENERATION 
 
As part of the UNÌC effort, several mesh generators have been evaluated and incorporated into 
UNÌC. This has been done in order to simplify the exchange of data for neutron transport 
calculations and provide detailed data for the high resolution display of results in a post-
processing module. The CUBIT package [2], developed at the Sandia National Laboratory, is the 
primary mesh generation tool used for neutronic analysis at this point, although ultimately we 
anticipate a specific package will be developed for modeling the reactor geometries.  
 
Initial results using CUBIT mesh generation have been successful for reactor analysis, but 
several potential problems arose that need to be addressed. Currently, CUBIT can use 
hexahedron and tetrahedron elements with serendipity, and Lagrangian basis functions, that 
ensure accurate treatment of the curved geometry in nuclear reactors (volume fractions must be 
preserved). As is the case with most mesh generators, the focus was on development for 
structural mechanics or computational fluid dynamics. In these fields, a fine discretization of the 
geometry is needed due to the rapidly changing parameters (flow velocity, pressure, stress, 
strain, etc.). For neutronics, these meshes are typically too fine and thus substantial effort is 
required in CUBIT to generate a “coarse” mesh applicable for the resolution needed in neutron 
transport. Future development will focus on a procedure which strictly controls the mesh 
generation via user input, thereby saving computational time and providing a convenient way to 
control the geometry and mesh creation process. 
 

 
 
Figure 1. 3D Geometry in CUBIT with Blocks, and Associated 2D Cross Section Meshing. 

 
One such approach to accomplish this was the development of a translator between the MCNP 
[3] geometry input file (combinatorial geometry) and the ACIS [4] CAD geometry description. 
This translator imports the MCNP combinatorial geometry input file and recursively generates 
solid geometry model exporting the result into a standard CAD format file. One such format, 
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ACIS (*.sat, *.acis and *.sab files), has widespread use and is quite portable. Future development 
is focused on auxiliary input which will directly control the meshing process. 
 
Figure 1 shows the solid model geometry for a test problem consisting of a pin subset from a fast 
reactor design with the associated coarse mesh created by CUBIT using the converter code. 
 

4. THE PNFE SOLVER 
 
At present the PNFE option, based on a finite element discretization of the space variable and 
spherical harmonics expansion of the angular variable, is well-developed – a companion paper 
[5] gives a comprehensive description of the methodology adopted in PNFE. The current solver is 
focused on steady state multigroup eigenvalue and/or fixed source problems for one, two, and 
three dimensional Cartesian geometries. In order to solve the large linear systems arising in this 
process, we employ preconditioned conjugate gradient method from PETSc (Portable, Extensible 
Toolkit for Scientific computation [6]. This library features distributed data structures - index 
sets, vectors, and matrices - as fundamental objects. Iterative linear and nonlinear solvers, 
implemented in as data structure-neutral a manner as possible, are combinable modularly, 
recursively, and extensibly through a uniform application programmer interface. Portability is 
achieved through MPI, but message-passing detail is not required in user code.  
 
The parallelization of unstructured mesh codes is complicated by the fact that no two 
interprocessor data dependency patterns are alike. Further, the user-provided global ordering 
may be incompatible with the subdomain-contiguous ordering required for high performance and 
convenient single program multiple data (SPMD) coding. We use one of many flavors of MeTiS 
[7] to partition the unstructured grid. We follow the ``owner computes'' rule under the dual 
constraints of minimizing the number of messages and overlapping communication with 
computation. Each processor “ghosts” its stencil dependences on its nearest neighbors, in our 
case with a one-level halo. We enforce a local ordering on the locally-owned nodes; ghost nodes 
get ordered after contiguous owned nodes. This strategy saves CPU cycles, since it avoids 
searches while deciding if a node is local or not, and the memory flag that would otherwise be 
required to distinguish a local or ghost node.  Next, scatter/gather operations are created between 
local sequential vectors and global distributed vectors, based on runtime connectivity patterns. 
Finally, matrix vector products needed for the iterative groupwise linear systems are translated 
into local and nonblocking communication tasks.  
 
Currently we are working on optimizing the parallel performance, memory allocation, and some 
custom preconditioners. We anticipate good performance of the PETSc solver technology for the 
parallel solution of all second order methods (PN, SN, and angular finite element).   
 
 

5. THE MOC SOLVER 
 
As mentioned, the other primary solver currently under development in the UNÌC code is based 
on the method of characteristics (MOC). The current geometrical decomposition has been 
applied to unstructured tetrahedral meshes with additional development for hexahedral elements 
underway. A finite element mesh discretization presents a great degree of modeling flexibility in 



UNÌC: Ultimate Neutronic Investigation Code 
 

Joint International Topical Meeting on Mathematics & Computation and  
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007 

5/11 

 

three-dimensional geometries when compared with that of combinatorial geometry and allows 
for a straightforward approach for defining the discrete source distribution. As is known, an 
important component of the computational expense of the MOC method is the calculation of the 
spatial intersection points of the characteristic lines (rays) which traverse the domain. The 
current ray tracing process begins by choosing an angular cubature on the unit sphere and 
defining a set of starting points on the boundary of the domain. Every ray that enters the problem 
domain will cross several elements in the domain and the intersection point for each ray with 
each element crossed must be computed as shown in Fig. 2. In Fig. 2, the box represents the 
problem domain while the triangle represents the triangular surface of some element within the 
domain where the intersection is being calculated for the various rays. 
 
For a finite element discretization, a marching scheme develops through the domain where the 
element to element connection information is required to determine which element is entered 
upon the exit from an adjoining element. Since all of the elements are the same throughout the 
domain, the actual intersection calculations become regular thereby greatly reducing the problem 
of coding different types of procedures for different types of surfaces.  
 
Within each tetrahedron the ray tracing is carried out by finding the intersections with the surface 
triangle using the highly efficient Moller-Trumbore algorithm [8]. This process has proven to be 
very effective due to the simple and repetitive structure of the finite element method.  
 

 
Figure 2. Ray Tracing Procedure. 

 
Our current approach for defining the starting trajectory points on the exterior boundary of the 
domain is to apply an effective equal ray density distribution on the problem domain surface. 
Based upon the targeted ray density, each element surface on the boundary is subdivided into a 
number of equal area triangles which meets the ray density constraint and the centroid of these 
sub-triangles is taken as the starting point for the ray trajectories. As one would expect, the sub-
triangles defined on the surface are easy to construct, but this approach can lead to a distribution 
of starting points which is not generally regular due to the fundamental differences in the 
boundary element surface areas. The primary drawback of this approach is that it does not 
control the number or density of rays very well. A better approach would be to define a set of 
rays which guarantees that every element in the domain is intersected for every angular direction 
in the cubature. In the literature, a ray casting or back projection method is typically used.  
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In the ray casting approach, the starting points are laid out in a regular grid on a plane which is 
perpendicular to the angular direction and outside of the problem domain. The intersection points 
with the domain boundary are then computed (ray casting) and the ray tracing process becomes 
the same as that already used. This additional “ray casting” calculation results in the method 
being more expensive than the current one while only providing a minor improvement in the 
distribution of points. In effect, although it guarantees an equal distribution of the rays, it does 
not guarantee that every element in the domain will be crossed by at least one ray. 
 
The more common option is the back projection method. In this approach, the entire mesh is 
projected onto the plane which is perpendicular to the angular direction and outside of the 
problem domain. This approach yields the minimal set of points required to guarantee that at 
least one ray in each angular direction will pass through each element. However, it requires the 
same effort as the ray casting process with the additional cost of generating the starting points via 
a mesh generation on the surface. In two-dimensions this approach has proved feasible since the 
back projection leads to one-dimensional meshing (line segments) which can be easily be 
translated into the minimal set of starting points. In three-dimensions this leads to a triangular 
mesh on the plane which is vastly more expensive to obtain. In future implementations of the 
code where parallel ray tracing is used, the back projection and ray casting approaches may 
prove to be better options for efficiently defining the starting points.  
 
 

6. RESULTS ON ABR BENCHMARK 
 
We have applied UNÌC to a small simplified problem derived from the ongoing design work of 
the Advanced Burner Reactor [9]. The intention was to check the validity of the results using the 
two methods implemented in the code, rather than obtaining physically meaningful solutions. 
Based upon the information obtained from the ABR design group, we have defined the 
simplified problem shown in Fig. 3 through Fig. 5.  
 
As can be seen, the problem assumes one-sixth symmetry. An unrealistic duct wall was 
incorporated to simulate the necessary effects in a comparable computational fluid dynamics 
simulation and has minimal effects on the neutronics problem. Axially the configuration has 80 
cm of active core zone with 20 cm lower reflector and upper reflector where structural steel 
replaces the fuel pin inside the pin clad. The fission gas plenum (1.5 m) and upper structural 
detail (~20 cm) were neglected from this study. Reflected boundary conditions are assumed in 
the radial plane and vacuum boundary conditions are assumed at the upper and lower boundaries. 
Typical metal fuel densities were used. Due to memory limitations on the available serial 
machines, a five energy group structure was implemented for the cross sections where 850 
degree K nominal fuel temperatures were assumed in the MC2-2 cross section generation code 
[10]. In the future, as computational capabilities allow, the energy group structure will be refined 
with a targeted goal of ~1000 groups.  
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Figure 3. Benchmark Radial Geometry.  Figure 4. Benchmark Axial Geometry. 
 
 

 
 

Figure 5. Benchmark pin radial geometry. 
 
 
A reference solution was obtained by running the Monte Carlo code MCNP in multigroup mode 
using the 5 group set of cross sections. Twenty-five million histories were used to obtain an 
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eigenvalue of 1.45637 ± 0.00012. Table I shows the comparable solutions using the PNFE option 
in UNÌC up to a P15 angular approximation. Figure 6 shows the power distribution at several 
different axial heights also obtained using the PNFE option in UNÌC. Approximately 2000 spatial 
degrees of freedom are implemented in the linear hexahedral finite element mesh while 8000 
were used for the quadratic hexahedral mesh (uniform meshes of 5 cm were used in the axial 
direction). Further increases in the number of spatial degrees of freedom did not lead to any 
significant changes in the results and no optimization study was performed to determine the 
optimal spatial approximation. From Table I, we can infer that full angular convergence is not 
present, which additional work in two-dimensions proved. In short, the residual error is 
attributable to the streaming of neutrons through the narrow sodium channel surrounding the fuel 
pin. This leads to an angular discontinuity in the flux, and thus a very large number of spherical 
harmonics are required to obtain an accurate solution. It is likely that this type of problem will 
worsen as more energy groups are used; hence the focus on development of a MOC option. A 
difference between the linear and quadratic spatial meshes is also observable as the angular 
approximation is refined. This is due to the general behavior of first order spatial approximations 
in the second order (double derivative) form of the transport equation which has been noted in 
the literature. The use of cubic and higher order Lagrange meshes has proven to provide virtually 
no advantage over the quadratic mesh approximation, especially with the current difficulties 
constraining the coarseness of the mesh. 
 

Table I. Computed Eigenvalues for Benchmark Problem Using PNFE Option. 
PN Linear Hexahedral Mesh Quadratic Hexahedral Mesh 
1 1.38406 1.38447 
3 1.41759 1.41887 
5 1.43025 1.43242 
7 1.43638 1.43936 
9 1.43987 1.44355 
11 1.44203 - 
13 1.44346 - 
15 1.44446 - 

. 
Table II shows the results obtained using the MOC option in UNÌC for standard SN cubature of 
the angular approximation. The combined effect of a flat source approximation and the use of 
tetrahedral elements lead to 450000 elements being defined in the calculation. Figure 7 shows 
the cross section of the geometry used for this calculation. We anticipate a reduction in the 
number of elements of ~10 can be achieved if hexahedral elements are used. Additional gains 
can be achieved by implementing a linear spatial source approximation which is currently being 
studied. From Table II, the MOC code yields solutions which are in remarkably good agreement 
with the Monte Carlo reference solution. However, further investigation is required to understand 
the lack of systematic convergence with respect to refinements in the SN cubature. 
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Figure 6. Power Distribution at Different Heights (z=0.0 is Midplane) For the Benchmark 
Problem Using PNFE. 

 

 
 

Figure 7. Two-dimensional Cross Section of meshes in the MOC Calculations. 
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Table II. Computed Eigenvalues for Benchmark Problem Using the MOC Option. 
 Sn cubature order (Carlson Level Symmetric) 

Number of rays 
by angle S8 S10 S12 S14 

306355 1.45232 
(-406)* 

1.45654 
(17)* 

1.45740 
(102)* 

1.45621 
 (-16)* 

*difference (pcm) vs. Monte Carlo Reference Calculation (1.45637 ± 0.00012). 
 
 
 
In the near future we expect to perform a full assembly (217 pins) ABR problem followed by a 
full core calculation. We hope to develop the capability such that up to 1000 groups can be used 
in a relatively short amount of time. With regard to coupled neutronics and computational fluid 
dynamics work, the short term goal is to solve the single fuel assembly problem coupling UNÌC 
and the NEK5000 thermal-hydraulics code [11]. 
 

7. CONCLUSIONS 
 
A long-term project focused on advanced simulation of the nuclear fuel cycle is underway at 
ANL. One component of the overall code suite is a comprehensive neutronic code which 
fundamentally includes geometrical flexibility, multi-resolution, and self-adaptivity capabilities 
as well the use of a large number of groups such that modern multi-step procedures of group 
collapse and homogenization are avoided. Currently, two solvers of the transport equation have 
been developed and implemented in UNÌC: one is based on the second order form of the 
Boltzmann equation using a spherical harmonics angular approximation while the second one is 
based on the first order integral form of the transport equation using the method of 
characteristics. 
 
In this work we have demonstrated the application of these codes to a simple, but difficult 
benchmark problem such that the numerical methodologies adopted can be verified. Although a 
large amount of work remains such that an efficient, every-day tool is developed, the current 
results do show promise. Many areas of development are foreseen for future work which include: 
 

 
• Performance optimization of UNÌC on large scale parallel machines with tens of 

thousands of processors. 
• Use of superior algorithms to reduce memory requirements needed in the solution of very 

large problems. We have estimated that upwards of 50 petabytes of data will be required 
in the case of 10,000 energy groups in a full reactor analysis. 

• Implementation and use of improved iteration strategies: use of diffusion synthetic 
acceleration for inner iteration, Tchebychev polynomial acceleration of the outer 
iterations, and energy group rebalance techniques for upscattering iterations. 

• Extended second order formulations to include discrete ordinate methods and possibly 
triangular angular finite elements. 
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• Development of a coupled methodology in space (and eventually energy) for 
simultaneous use of the various transport methodologies implemented in UNÌC. 

• Multi-resolution: use of different methodologies in energy and angle. 
• Self-adaptivity to automatically establish best meshing and/or angular discretization. 
• Fine Grained Energy Treatment: use of spectral methods, efficient local collapsing 

(transparent to user). 
• Calculation of adjoint, higher eigenfunctions, and the inhomogeneous solution: use of 

FAS (Full Approximation Scheme) [12], or Arnoldi method [13] for more than one 
eigenvalue, and simultaneous solution of forward and adjoint. 
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